Cuckoo Sandbox Book
Release 0.3

Cuckoo Sandbox

September 02, 2015

Contents

1 Having troubles? 3
1.1 FAQ . . . e e e e e 3
2 Contents 5
2.1 Introduction e e 5
2.2 Installation e e e e e e e e 9
2.3 0 USAZE .« v v e e e e e e e e e e e e e e e 19
2.4 Customization v v it e e e e e e e e e e e e e e e e e e 26
2.5 Final Remarks e e e 37

Cuckoo Sandbox Book, Release 0.3

Cuckoo Sandbox is an Open Source software for automating analysis of suspicious files. To do so it makes use
of custom components that monitor the behavior of the malicious processes while running in an isolated Windows
environment.

This book explains what Cuckoo is, how it works and what you can do with it, from setup and run Cuckoo to how to
customize it and extend it.

Contents 1

Cuckoo Sandbox Book, Release 0.3

2 Contents

CHAPTER 1

Having troubles?

If you’re having troubles you might want to check out the FAQ it might already have the answers to your questions.

1.1 FAQ

Frequently Asked Questions:
* How to start an analysis?
* How to change Cuckoo default behaviour?
* Can I redistribute Cuckoo Sandbox?
e Can I include Cuckoo Sandbox in my closed source commercial product?
e [want to help Cuckoo, what can I do?

e [want to help but I don’t have time

1.1.1 Usage questions

How to start an analysis?

You can simply start an analysis via command-line utility submit . py. Check Submit an analysis.

How to change Cuckoo default behaviour?

Depending on what you mean, you can edit Cuckoo’s configuration files (see Configuration) or work on the analysis
packages (see Analysis Packages).

1.1.2 General questions

Can | redistribute Cuckoo Sandbox?

Yes, you can. Cuckoo Sandbox is distributed under the GNU General Public License version 3. See License.

Cuckoo Sandbox Book, Release 0.3

Can | include Cuckoo Sandbox in my closed source commercial product?

Generally no, you can’t. Cuckoo Sandbox is distributed under the GNU General Public License version 3. See License.

| want to help Cuckoo, what can | do?

Your help is very appreciated, you can help Cuckoo Sandbox in several ways, from coding to send bug reports. See
Final Remarks.

| want to help but | don’t have time

There are many ways to help Cuckoo: coding, testing, reporting bugs, donating money or hardware, reviewing code
and documentation or submitting feature requests or feedback. Just do whatever you feel could help the project with
your possibilities.

Otherwise you can ask to the developers and to other Cuckoo users in the #cuckoobox IRC channel.

4 Chapter 1. Having troubles?

CHAPTER 2

Contents

2.1 Introduction

This is an introductory chapter to Cuckoo Sandbox. It explains some basic malware analysis concepts, what’s Cuckoo
an how it can fit in malware analysis.

2.1.1 Sandboxing

As defined by Wikipedia, “in computer security, a sandbox is a security mechanism for separating running programs.
It is often used to execute untested code, or untrusted programs from unverified third-parties, suppliers, untrusted
users and untrusted websites.”.

This concept applies to malware analysis’ sandboxing too: our goal is to run an unknown and untrusted application or
file inside an isolated environment and get information and what it does.

Malware sandboxing is a practical application of the dynamical analysis approach: instead of statically analyze the
binary file, it gets executed and monitored in real-time.

This approach obviously has pros and cons, but it’s a valuable technique to obtain additional details on the malware,
such as its network behavior. Therefore it’s a good practice to perform both static and dynamic analysis while inspect-
ing a malware, in order to gain a deeper understanding of it.

Simple as it is, Cuckoo is a tool that allows you to perform sandboxed malware analysis.

Using a Sandbox
Before starting installing, configuring and using Cuckoo you should take some time to think on what you want to
achieve with it and how.
Some questions you should ask yourself:
* What kind of files do I want to analyze?
¢ Which volumes of analysis do I want to be able to handle?
* Which platform do I want to use to run my analysis on?
* What kind of information I want about the file?

The creation of the isolated environment (the virtual machine) is probably the most critical and important part of a
sandbox deployment: it should be done carefully and with proper planning.

Before getting hands on the virtualization product of your choice, you should already have a design plan that defines:

http://en.wikipedia.org/wiki/Sandbox_%28computer_security%29

Cuckoo Sandbox Book, Release 0.3

* Which operating system, language and patching level to use.
* Which softwares to install and which versions (particularly important when analyzing exploits).

Consider that automated malware analysis is not deterministic and its success might depend on a trillion of factors:
you are trying to make a malware run in a virtualized system as it would do on a native one, which could be tricky to
achieve and could not always succeed. Your goal should be both to create a system able to handle all the requirements
you need as well as try to make it as realistic as possible.

For example you could consider leaving some intentional traces of normal usage, such as browsing history, cookies,
documents, images etc. If a malware is designed to operate, manipulate or steal such files you’ll be able to notice it.

Virtualized operating systems usually carry a lot of traces with them that makes them very easily detectable. Even if
you shouldn’t overestimate this problem, you might want to take care of this and try to hide as many virtualization
traces as possible. There is a lot of literature on Internet regarding virtualization detection techniques and countermea-
sures.

Once you finished designing and preparing the prototype of system you want, you can proceed creating it and de-
ploying it. You will be always in time to change things or slightly fix them, but remember that good planning at the
beginning always means less troubles in the long run.

2.1.2 What is Cuckoo?

Cuckoo is an open source automated malware analysis system.

It’s used to automatically run and analyze files and collect comprehensive analysis results that outline what the malware
does while running inside an isolated Windows operating system.

It can retrieve the following type of results:
* Traces of win32 API calls performed by all processes spawned by the malware.
* Files being created, deleted and downloaded by the malware during its execution.
* Network traffic trace in PCAP format.
* Screenshots of Windows desktop taken during the execution of the malware.

 Traces of assembly instructions performed by the malware.

Some History

Cuckoo Sandbox started as a Google Summer of Code project in 2010 within The Honeynet Project. It was originally
designed and developed by Claudio “nex” Guarnieri, who still mantains it and coordinates all efforts from joined
developers and contributors.

After initial work during the summer 2010, the first beta release was published on Feb. 5th 2011, when Cuckoo was
publicly announced and distributed for the first time.

In March 2011, Cuckoo as been selected again as a supported project during Google Summer of Code 2011 with The
Honeynet Project, during which Dario Fernandes joined the project and extended its functionalities.

On November 2nd 2011 Cuckoo the release of its 0.2 version to the public as the first real stable release.

On late November 2011 Alessandro “jekil” Tanasi joined the team expanding Cuckoo’s processing and reporting
functionalities.

On December 2011 Cuckoo v0.3 gets released.

6 Chapter 2. Contents

http://www.google-melange.com
http://www.honeynet.org

Cuckoo Sandbox Book, Release 0.3

Use Cases
Cuckoo is designed to be used both as a standalone application as well as to be integrated in larger frameworks, thanks
to its submission and processing automation capabilities.
It can be used to analyze:

* Generic Windows executables

* DLL files

¢ PDF documents

* Microsoft Office documents

* URLs

* PHP scripts

e Almost everything else

Thanks to its scripting and customization capabilities there’s basically no limit to what you can achieve with Cuckoo,
for example automating malware unpacking or automating the dump of configuration files and web-injects from bank-
ing trojans.

For more information on customizing Cuckoo, see the Customization chapter.

Architecture

Cuckoo Sandbox consists of a central management software which handles sample execution and analysis.

Each analysis is launched in a fresh and isolated virtual machine. Cuckoo’s infrastructure is composed by an Host
machine (the management software) and a number of Guest machines (virtual machines for analysis).

The Host runs the core component of the sandbox that manages the whole analysis and execution process, while the
Guests are the isolated environments where the malwares get actually safely executed and analyzed.

The following picture explains Cuckoo’s architecture:

Although recommended setup is GNU/Linux (Ubuntu preferrably) as host and Windows XP Service Pack 3 as guest,
Cuckoo proved to work smoothly also on Mac OS X as host and Windows Vista and Windows 7 as guests.

Obtaining Cuckoo

Cuckoo can be downloaded from the official website, where the stable and packaged releases are distributed, or can
be cloned from our official git repository.

Warning: While being more updated, including new features and bugfixes, the version available
in the git repository should be considered an under development stage. Therefore its stability is not
guaranteed and it most likely lacks updated documentation.

2.1.3 License

Cuckoo Sandbox is copyrighted by Claudio Guarnieri and is licensed under GNU General Public License version 3.

2.1. Introduction 7

http://www.cuckoobox.org
http://github.com/cuckoobox/cuckoo

Cuckoo Sandbox Book, Release 0.3

Virtual Switch
All traffic is dumped

Cuckoo Host

Responsible for
Guest management.
starts analysis and
get reports back.
Cuckoo Guests
A clean environment
when run a sample.
The sample behaviour
is reported back to Host.

8 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

Cuckoo Sandbox is free software: you can redistribute it and/or modify it under the terms of GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your opinion) any later
version.

See the GNU General Public License for more details.

2.1.4 Disclaimer

Cuckoo is distributed as it is, in the hope that it will be useful, but without any warranty neither the implied mer-
chantability or fitness for a particular purpose.

Whatever you do with this tool is uniquely your own responsibility.

2.2 Installation

This chapter explains how to install Cuckoo.

Note: This documentation refers to Host as the underlying operating systems on which you are running Cuckoo
(generally being a GNU/Linux distribution) and to Guest as the Windows virtual machine used to run the isolated

analysis.

2.2.1 Preparing the Host
Even though it’s reported to run on other operating systems too, Cuckoo is originally supposed to run on a GNU/Linux

native system. For the purpose of this documentation, we chose latest Ubuntu LTS as reference system for the
commands examples.

Requirements

Before proceeding on configuring Cuckoo, you’ll need to install some required software and libraries.

Installing Python libraries

Cuckoo host components are completely written in Python, therefore make sure to have an appropriate version in-
stalled. For current release Python 2.6 or 2.7 are preferred.

Install Python on Ubuntu:

$ sudo apt-get install python

Cuckoo makes use of several libraries which include:
* Magic: for detecting file types.
» Dpkt: for extracting relevant information from PCAP files.
* Mako: for rendering the HTML reports and the web interface.

On Ubuntu you can install all of them with the following command:

$ sudo apt-get install python-magic python-dpkt python-mako

2.2. Installation 9

http://www.gnu.org/licenses/gpl.txt
http://www.darwinsys.com/file/
http://code.google.com/p/dpkt/
http://www.makotemplates.org

Cuckoo Sandbox Book, Release 0.3

On different distributions refer to the provided official homepage to retrieve other installers or sources.
Other optional libraries, which do not affect Cuckoo’s execution, include:

* Pyssdeep: for calculating ssdeep fuzzy hash of files.

Installing VirtualBox

At current stage, Cuckoo heavily relies on VirtualBox as it’s unique virtualization engine.

Despite being often packaged by all GNU/Linux distributions, you are encouraged to download and install the latest
version from the official website. The reason behind this choice is that packaged versions of VirtualBox (called OSE)
generally have some limitations or adjustments in order to meet requirements of the GNU GPL license.

You can get the proper package for your distribution at the official download page.

The installation of VirtualBox is not in purposes of this documentation, if you are not familiar with it please refer to
the official documentation.

Installing Tcpdump

By default Cuckoo makes use of VirtualBox’s embedded network tracing functionalities, but in some cases or some
network configurations you might need to adopt an external network sniffer.

If you intend to use VirtualBox’s own network trace, you can skip this section.
The best choice for packet interception is tcpdump of course.

Install it on Ubuntu:

‘$ sudo apt—-get install tcpdump

Tcpdump requires root privileges, but since you don’t want Cuckoo to run as root you’ll have to set specific Linux
capabilities to the binary:

’$ sudo setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump

You can verify the results of last command with:

$ getcap /usr/sbin/tcpdump
/usr/sbin/tcpdump = cap_net_admin, cap_net_raw+eip

Installing Cuckoo
Proceed with download and installation.
Create a user

Even if you obviously can run Cuckoo with your current user, creating a dedicated one is always a good practice.

Create a new user:

$ sudo adduser cuckoo

Make sure the new user belongs to the “vboxusers” group (or the group you used to run VirtualBox):

10 Chapter 2. Contents

http://code.google.com/p/pyssdeep/
http://www.virtualbox.org
https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Documentation
http://www.tcpdump.org

Cuckoo Sandbox Book, Release 0.3

$ sudo useradd -G vboxusers cuckoo

Download Cuckoo

You can get your copy of Cuckoo from the official website or from our git repository.

Please notice that the archives to be downloaded from the website are core releases, while the version on git has to be
considered an under development stage, therefore possibly unstable and not yet fully documented.

Install it

Extract or checkout your copy of Cuckoo to a path of your choice and you’re ready to go ;-).

Configuration

Cuckoo relies on two main configuration files:
* cuckoo.conf: for configuring general behavior and analysis options.

* reporting.conf: for enabling or disabling report formats.

cuckoo.conf

We’ll first start editing conf/cuckoo.conf walking through every section and option available.

Logging Following is the logging section:

[Logging]

Enable/Disable additional debugging messages. This messages won't wrote to
log file but just printed on screen. [on/off]

debug = off

The debug option enables or disables debug messages that will be both printed on standard output as well as stored in
the log file.

Analysis Following is the analysis section:

[Analysis]

This is the actual analysis timeout (expressed in seconds). This represents
the default timeout performed by analysis core if none is specified.
analysis_timeout = 200

Watchdog timeout (expressed in seconds) for analysis execution to complete,
when this timeout gets hit, current execution is aborted and virtual machine
is restored and freed.

watchdog_timeout = 600

Specify here the path where analysis results shall be stored.

results_path = analysis/

This section defines two analysis time boundaries:

« analysis timeout: this timeout represent the maximum time an analysis should last, it can be overridden when
submitting a file to analyze.

2.2. Installation 11

http://www.cuckoobox.org
https://github.com/cuckoobox/cuckoo

Cuckoo Sandbox Book, Release 0.3

» watchdog timeout: this is the time limit for which Cuckoo host should wait for the guest component (analyzer)
to terminate its operations.

The analysis timeout should be smaller than the watchdog timeout. If by mistake it’s configured differently, Cuckoo
will force the analysis timeout to a smaller value.

Consider that the watchdog timeout should be raised just under critical circumstances, where the analyzer or virtual
machine are not responding and therefore need to be killed. When this happens, you’ll most likely lose any analysis
results from that run.

The results_path option defines where to store the analysis results.

Processing Following is the processing section:

[Processing]

Specify here the interpreter path to be used to launch the script.
interpreter = /usr/bin/python

Specify here the path to the analysis results processing script.
pProcessor = processor.py

This section defines where the post-analysis processing script is located and how it should be executed.

This script should be your interface to the analysis results and you should use it and customize it at your will in order
to consume the data generated by Cuckoo. We’ll get more into details on this in the Customization chapter.

By default Cuckoo provides a Python processing script that invokes some Python classes used to process the results
and to generate human readable analysis reports (text, HTML, JSON).

The interpreter option defines the path to the application to be used to execute the script.

The processor option defines the path to the script to be executed.

Sniffer Following is the sniffer section:

[Sniffer]

Enable or disable the following option by assigning a True or False value.
In case you decide to disable it, you're supposed to either not have any
network dump or to used VirtualBox's (or any other virtualization engine

you are using) to handle the network monitoring instead of using an external
sniffer such as tcpdump. [on/off]

sniffer = off

Path to the sniffer (tcpdump) binary.

path = /usr/sbin/tcpdump

This specifies the network interface where the sniffer will bind to in order
to monitor virtual machines' generated traffic.

interface = ethO

R

This section should be considered and edited just in the case you decided to use an external sniffer (assuming that you
properly installed it already).

If otherwise you don’t plan to use an external sniffer, you can skip this section.
First you’ll need to enable the snifer option by setting it to “on”.
The path option defines where the sniffer (tcpdump) binary is located. It should be generally correct by default.

The interface option defines which network interface the sniffer should monitor. This obviously depends on your
network configuration and on how you are planning to configure your virtual machines’ networking. It’s up to you.

12 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

Virtual Machines Following is the Virtual Machines section:

[VirtualMachines]

Virtualization product.

engine = VirtualBox

List virtual machines IDs separated by commas.

enabled = cuckool

Set to "gui" if you want Cuckoo to spawn virtual machines' GUIs or set to
"headless" if you don't.

mode = gui

Path to local Python installation on guest machines. Please be sure to have
correctly set this value as it's critical to Cuckoo's proper execution.
python = C:\Python27\python.exe

This is probably the most important section in the configuration file, as it defines the core options for the virtualization
engine.

The engine option defines which virtualization module to use. At current stage only VirtualBox is supported, therefore
you shouldn’t modify this option unless you really know what you’re doing.

The enabled option defines a comma-separated list of enabled virtual machines.

Note: The virtual machines’ IDs used by Cuckoo are user-defined names that are exclusively used
internally by Cuckoo. They are not the names used to label the virtual machines inside VirtualBox. Even

if they could have the same values (not recommended), it’s important to understand that they are not the
same thing.

The mode option defines if the virtualization software should spawn the machines in gui mode (with regular window)
or in headless, which will not create any graphical interface.

The python option defines the location of the Python interpreter inside the virtualized Windows environment. This is
critical to proper execution of Cuckoo, so take care to use the path you define here when installing Python on Windows
or to come back here later and modify this value accordingly.

Virtual machines details For each virtual machine you specified in the comma-separated list in the enabled option
of the previous section, you have to create a dedicated section named with the ID value you assigned in the list.

An example of such section is:

[cuckool]
name = Cuckool
username = Me

password = cuckoo

Please notice that the shared folder name must coincide with the current
virtual machine id, which is the name you assigned between the square

brackets (e.g. [cuckool]).

share = shares/cuckool

As you notice the section name [cuckool] has to contain the ID you assigned to the virtual machine.
The name option is the name you’re going to use to create the virtual machine in VirtualBox.
The username option defines the name of the Windows account you’re going to create.

The password option defines the password for such Windows account.

Note: The Windows account is mandatory. It is needed to allow the host to execute commands inside the
guest operating system, therefore the username and password options must containd valid values.

2.2. Installation 13

Cuckoo Sandbox Book, Release 0.3

The share option defines the path to the shared folder you’re going to assign to this specific virtual machine. This
folder has to exist, therefore make sure to create it. The name of such folder must coincide with the ID you assigned
to current virtual machine. In the example given, the current virtual machine ID is “cuckool”, so the shared folder is
named “cuckool” as well.

If for example you defined more than one virtual machine in the enabled option (e.g. “cuckool,cuckoo2”) you’ll have
to create multiple details sections like:

[cuckool]

name = Cuckool
username = Me

password = cuckoo
share = shares/cuckool
[cuckoo2]

name = Cuckoo2
username = Me

password = cuckoo
share = shares/cuckoo?2

reporting.conf

The conf/reporting.conf file contains information on the automated reports generation.

It contains the following section:

[Tasks]

Enable/Disable reporting tasks.

Here you can choose what report enable or disable.

By default all available reporting tasks are enabled.
Available values are [on/off]

jsondump = on
reporttxt = on
reporthtml = on

By setting those option to on or off you enable or disable the generation of such reports.

2.2.2 Preparing the Guest
At this point you should have configured Cuckoo host component and you should have designed and defined the
number and the names of the virtual machines you are going to use for malware execution.

Now it’s time to create such machines and to configure them properly.

Creation of the Virtual Machine

Once you have properly installed VirtualBox you can proceed on creating all the virtual machines you need.

To do so you can either use the graphical user interface or the powerful command-line utility VBoxManage provided
by VirtualBox.

Consider that the use of VirtualBox is not in the purposes of this documentation so please refer to the official docu-
mentation for it.

Note: You can find some hints and considerations on how to design and create your virtualized environ-
ment in the Sandboxing chapter.

14 Chapter 2. Contents

https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html

Cuckoo Sandbox Book, Release 0.3

Note: For analysis purposes you are recommended to use Windows XP Service Pack 3.

When creating the virtual machine, Cuckoo doesn’t require any specific configuration. You can choose the options
that best fit your needs.

Requirements

In order to make Cuckoo run properly in your virtualized Windows system, you will have to install some required
softwares and libraries.

Install Guest Additions

VirtualBox’s Guest Additions provide some additional functionalities that allow the host and the guests to interact
easily.

They are required for:
* Time synchronization.
* Shared folders.
» Executing processes in the guest.

You can get details on how to install them from the dedicated chapter in the official documentation.

Install Python

Python is a strict requirement for the Cuckoo guest component (analyzer) to run properly.
You can download the proper Windows installer from the official website. Also in this case Python 2.7 is preferred.
Some Python libraries are optionals and provide some additional features to Cuckoo guest component. They include:
¢ Python Image Library: it’s used for taking screenshots of Windows desktop during the analysis.
* WinAppDbg: it’s used by the tracer package to dump assembly instructions.

They are not strictly required by Cuckoo to work properly, but you are encouraged to install them if you want to have
access to all features available. Make sure to download and install the proper packages according to your Python
version.

Additional Softwares

At this point you should have installed everything needed by Cuckoo to run properly.

Depending on what kind of files you want to analyze and what kind of sandboxed Windows environment you want to
run the malwares in, you might want to install additional softwares such as browsers, PDF readers, office suites etc.
Please remeber to disable the “auto update” or “check for updates” feature of any additional software.

This is completely up to you and to how you, you might get some hints by reading the Sandboxing chapter.

Network Configuration

Now it’s the time to setup the network configuration for your virtual machine.

2.2. Installation 15

http://www.virtualbox.org/manual/ch04.html
http://www.python.org/getit/
http://www.pythonware.com/products/pil/
http://winappdbg.sourceforge.net/

Cuckoo Sandbox Book, Release 0.3

Windows Settings

Before configuring the underlying networking of the virtual machine, you might want to trick some settings inside
Windows itself.

One of the most important things to do is disabling Windows Firewall and the Automatic Updates. The reason behind
this is that they can affect the behavior of the malware under normal circumstances and that they can pollute the
network analysis performed by Cuckoo, by dropping connections or including unrelevant requests.

You can do so from Windows’ Control Panel as shown in the picture:

= Windows Security Center ,?||E||§|

e

¥ Security Center

Help pratect your PC

Mfiradoass Finawsall beps pootect vour compuler by presess o Lrauthnze o uees
frorn gaieirng acss s o polr compusst thiough e Intemes on g nebaork,

;E‘.'I'li:l.-\.i can regulary mgl:k foe impet nt L:-Ejdaaaﬁmigd hstalcmam fﬁm'
Turning on &utomatc Uodakes may aukomat ate winciows Update
@ 2 On recommended) softwee Flest, befoee: an obver upcates,]

Thie sellirig bhoack.e Al ouksids souces lom correcing laths Huow does Aukomatic U workd

compdlen valk b asceplion of Wose sakcad on e Exceplions: Lab, (] Ty ——

Ly remateally daaninas recammendes updases Far ey
Dion't allow exceptions cemzub=r and rotal them:

Seleot thin whes pou comnect o pudlic ae sz ia less seoue ey da ot (300 A
Iozalions, uzh 2z siports. ow will aol be nodlied when Windowe
_-ﬁ'ev-nd:{blurke pragrams. Seleztions on the Exzeplions bab wil be () Dovmilead updates Tor mey b l2tme chooss when boing el them,
ignoie

@ (= 00 [rod recommeanded]

Jovad usra bhe selhng, Twieng oll Ardees Freveall mep meks this ¥aur sernuter el be mere vulnershle uness vou ingtal
comaulen maes vudnsiabie b viuses and rladsie undates recuiary.

OHntfp ez mut don't sukemsbeslly doarlssd or retsl drem.

0 Tuen of f sutomatic Lodakas,

Irestalundates From the Windiowss Upcate Wek sk

At Microsoft, e cars sbout your priescy. Plesss resd our privacy statemsnt.

Virtual Networking

Now you need to decide how to make your virtual machine able to access Internet or your local network.

By default VirtualBox adopts Network Address Translation (NAT) which in most cases will be good enough for any
needs. This is also the configuration we’ll adopt in this documentation.

If you have particular needs and want to use some different networking, please refer to VirtualBox’s virtual networking
documentation.

16 Chapter 2. Contents

https://www.virtualbox.org/manual/ch06.html
https://www.virtualbox.org/manual/ch06.html

Cuckoo Sandbox Book, Release 0.3

Network Tracing

Unless you decided to use an external sniffer (as previously discussed in Configuration), you can proceed configuring
the network trace functionality provided by VirtualBox as explained here.

First you need to power off your virtual machine:

‘$ VBoxManage controlvm "Name of VM" poweroff

Then you enable network trace:

’$ VBoxManage modifyvm "Name of VM" —--nictracel on —--nictracefilel /path/to/cuckoo/share#/<VM ID>/dumy

The last argument specifies the path where the PCAP file will be stored. It has to be an absolute path and include the
file name as well. In order to make Cuckoo able to find the file you’ll have to specify the shared folder you created for
current virtual machine and “dump.pcap”.

Shared Folders

Cuckoo exchanges data between the host and the guest using VirtualBox’s Shared Folders.

In order to have them enabled on your virtual machine you should have installed the Guest Additions as specified in
Requirements.

You will have to add two shared folders:
* shares/setup: which is used to get Cuckoo analyzer’s components to be run inside virtualized Windows.

 shares/<VM ID>: the unique shared folder associated with your current Virtual Machine, which is used to store
the analysis results.

You can do so from VirtualBox’s graphical user interface or from the command line:

$ VBoxManage sharedfolder add "<Name of VM>" —--name "setup" --hostpath "/path/to/cuckoo
$ VBoxManage sharedfolder add "<Name of VM>" —-name "<VM ID>" —-hostpath "/path/to/cuckq

Where “<Name of VM>" is the label you gave to the virtual machine in VirtualBox and “<VM ID>" is the ID you
assigned to the Virtual Machine in Cuckoo.

Using the GUI, you should see something similar to this:

Saving the Virtual Machine

Now you should be ready to go and save the virtual machine to a snapshot state.

Before doing this make sure you rebooted it softly and that it’s currently running and with your Windows user logged
in. Once you are sure that the operating system is fully booted and ready to be snapshotted you can proceed.

You can take the snapshot from the graphical user interface or from the command line:

$ VBoxManage snapshot "<Name of VM>" take "<Name of snapshot>" --pause

After the snapshot creation is completed, you can power off the machine and restore it:

$ VBoxManage controlvm "<Name of VM>" poweroff
$ VBoxManage snapshot "<Name of VM"> restorecurrent

If you followed all the steps properly, your virtual machine should be ready to be used by Cuckoo.

2.2. Installation 17

shares/setup!
o/shares/<VM

https://www.virtualbox.org/wiki/Network_tips

Cuckoo Sandbox Book, Release 0.3

Shared Folders

Folders List

Name Path Aukto- Access

. ¥ Machine Folders
cuckoo1 /hom...resfcuckoo1 Yes Full
setup /home...ares/setup Yes Read-only
Transient Folders

18 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

Cloning the Virtual Machine
In case you planned to use more than one virtual machine, there’s no need to repeat all the steps done so far: you can
clone it. In this way you’ll have a copy of the original virtualized Windows with all requirements already installed.

To clone a machine you can use the graphical user interface (at least in the most recent versions of VirtualBox) or from
the command line:

$ VBoxManage clonevm "<Name of original VM>" —--name "<Name of new VM>" --registervm ‘

Now you have an exact copy of your original virtual machine saved with the new name you specified.

Obviously the new virtual machine will bring along also the settings of the original one, which is not good. Now
you need to proceed repeating the steps explained in Network Configuration, Shared Folders and Saving the Virtual
Machine for this new machine.

2.3 Usage

This chapter explains how to use Cuckoo.

2.3.1 Starting Cuckoo

To start Cuckoo use the command:

’$ python cuckoo.py

Make sure to run it inside Cuckoo’s root directory.

You will get an output similar to this:

VAN R I A VAR B DV I VAR
o O =
))\ / __/ v0.3

www.cuckoobox.org
Copyright (C) 2010-2011

[2011-12-18 17:43:06,343
[2011-12-18 17:43:06,834
[2011-12-18 17:43:06,834
[2011-12-18 17:43:06,840
[2011-12-18 17:43:06,841
[2011-12-18 17:43:06,841

] Core.Init] INFO: Started.
]
]
1
]
]
[2011-12-18 17:43:06,841]
]
]
1
]
]
1
]

[

[VirtualMachine.Check] INFO: Your VirtualBox version is: "4.1/6", good!

[Core.Init] INFO: Populating virtual machines pool...

[VirtualMachine.Infos] INFO: Virtual machine "Cuckool" information:

[VirtualMachine.Infos] INFO: \ Name: Cuckool

[VirtualMachine.Infos] INFO: ID: XXXXXXXX—XXXX~XXXX—AXXX~XXXXXXXX:

[VirtualMachine.Infos] INFO: CPU Count: 1 Core/s

[2011-12-18 17:43:06,841] [
[2011-12-18 17:43:06,841] [
[2011-12-18 17:43:06,841] [
[2011-12-18 17:43:06,842] [
[2011-12-18 17:43:06,842] [
[2011-12-18 17:43:06,842] [
[2011-12-18 17:43:07,045] [

VirtualMachine.Infos] INFO: VRAM Size: 16 MB
VirtualMachine.Infos] INFO: State: Saved

VirtualMachine.Infos] INFO: Current Snapshot: "Clean"
VirtualMachine.Infos] INFO: | MAC Address: 08:00:27:XX:XX:XX
Core.Init] INFO: 1 virtual machine/s added to pool.
Database.Init] INFO: Generated database "db/cuckoo.db" which|didn't exist

_|
|
|
VirtualMachine.Infos] INFO: | Memory Size: 192 MB
|
|
|

Now Cuckoo is ready to run and it’s listening for submissions.

2.3. Usage 19

Cuckoo Sandbox Book, Release 0.3

2.3.2 Submit an analysis

In order to submit a file to be analyzed you can:
 Use provided submit.py utility.
* Directly interact with the SQLite database.

¢ Use Cuckoo Python functions directly from Cuckoo’s library.

Submission Utility

The easiest way to submit an analysis is to use the provided submit.py command-line utility. It currently has the

following options available:

Usage: submit.py [options] filepath

Options:
-h, --help show this help message and exit
-t TIMEOUT, --timeout=TIMEOUT
Specify analysis execution time limit
-p PACKAGE, —--package=PACKAGE
Specify custom analysis package name
—-r PRIORITY, --priority=PRIORITY

—-c CUSTOM, —--custom=CUSTOM

-m MACHINE, --machine=MACHINE

Specify an analysis priority expressed in integer
Specify any custom value to be passed to postprocessing
-d, --download Specify if the target is an URL to be downloaded
-u, —-url Specify if the target is an URL to be analyzed

Specify a virtual machine you want to specifically use for this

The concept of analysis packages will be dealt later in this documentation (at Analysis Packages). Following are some

usage examples:

Example: submit a local binary:

’$ python submit.py /path/to/binary

Example: submit a local binary and specify an higher priority:

‘$ python submit.py /path/to/binary --priority 5

Example: submit a local binary and specify a custom analysis timeout of 60 seconds:

‘$ python submit.py /path/to/binary --timeout 60

Example: submit a local binary and specify a custom analysis package:

’$ python submit.py /path/to/binary —--package <name of package>

Example: submit an URL to be downloaded locally and analyzed:

’$ python submit.py --download http://www.website.tld/file.exe

Example: submit an URL to be analyzed within Internet Explorer:

‘$ python submit.py --url http://maliciousurl.tld/exploit.php

Example: submit a local binary to be run on virtual machine cuckool:

20

Chapter 2. Contents

analysis

Cuckoo Sandbox Book, Release 0.3

$ python submit.py /path/to/binary —--machine cuckool

Interact with SQLite

Cuckoo is designed to be easily integrated in larger solutions and to be fully automated. In order to automate analysis
submission or to provide a different interface rather than the command-line (for instance a web interface), you can
directly interact with the SQLite database located at db/cuckoo.db.

The database contains the table queue which is defined as the following schema:

1 CREATE TABLE queue (

2 id INTEGER PRIMARY KEY,

3 md5 TEXT DEFAULT NULL,

4 target TEXT NOT NULL,

5 timeout INTEGER DEFAULT NULL,

6 priority INTEGER DEFAULT O,

7 added_on DATE DEFAULT CURRENT TIMESTAMP,
8 completed_on DATE DEFAULT NULL,
9 package TEXT DEFAULT NULL,

10 lock INTEGER DEFAULT O,

11 status INTEGER DEFAULT O,

12 custom TEXT DEFAULT NULL,

13 vm_id TEXT DEFAULT NULL

14) ;

Following are the details on the fields:
e id: it’s the numeric ID also used to name the results folder of the analysis.
* md5: it’s the MD5 hash of the target file.
* target: it’s the path pointing to the file to analyze.
* timeout: it’s the analysis timeout, if none has been specified the field is set to NULL.
* priority: it’s the analysis priority, if none has been specified the field is set to NULL.
* added_on: it’s the timestamp of when the analysis request was added.
e completed_on: it’s the timestamp of when the analysis has been completed.
* package: it’s the name of the analysis package to be used, if non has been specified the field is set to NULL.
e lock: it’s field internally used by Cuckoo to lock pending analysis.

e status: it’s a numeric field representing the status of the analysis (0 = not completed, 1 = completed success-
fully, 2 = failed).

e custom: it’s a custom user-defined text that can be used for synchronization between submission and post-
analysis processing.

e vm_id: it’s the ID (as defined in cuckoo.conf) of a virtual machine the user specifically wants to use for the
analysis.

Cuckoo Python Functions

In case you want to write your own Python submission script, you can use the add_task () function provided by
Cuckoo, which has the following prototype:

2.3. Usage 21

Cuckoo Sandbox Book, Release 0.3

def add_task(self, target, md5 = None,

timeout

= None,

package

= None, priority =

Mone, custom =

Following is a usage example:

1

2

3

4

5

#!/usr/bin/python
from cuckoo.core.db import CuckooDatabase

db = CuckooDatabase ()
db.add_task ("/path/to/binary")

2.3.3 Analysis Packages

The analysis packages are a key component in Cuckoo Sandbox.

They consist in structured Python scripts which are executed inside the virtual machine and that define how Cuckoo
should conduct the analysis.

As you already know, you can choose which analysis package to use by specifying its name at submission time (see
Submit an analysis) like following:

$ python submit.py /path/to/malware —--package <package name>

If none is specified, Cuckoo will try to detect the type of the file and choose the proper analysis package accordingly.
If the file type is not supported and no package was specified, the analysis will be aborted and marked as failed in the
database.

This functionality allows you not only to use existing analysis packages, but also create some of your own and cus-
tomize your Cuckoo setup. Ths topic will be dealt in details in the Analysis Packages customization chapter.

Cuckoo provides some default analysis packages which include:

exe: default analysis package used to analyze generic Windows executables.

d11: used to analyze Dynamic Linked Libraries.
pdf:
doc:

php: used to analyze PHP scripts.

used to analyze Adobe Reader while opening the given PDF file.

used to analyze Microsoft Office while opening documents.

ie: used to analyze Internet Explorer while opening the given URL.

firefox: used to analyze Mozilla Firefox while opening the given URL.

tracer: used to trace assembly instructions performed by the given file.

2.3.4 Execution

When Cuckoo receives an analysis request, you’ll see something like this:

1

2

3

4

5

6

[2011-12-18 18:20:16,242] [Core.Dispatcher]
[2011-12-18 18:20:16,424] (Task #1) [Core
[2011-12-18 18:20:17,005] [VirtualMachine.
[2011-12-18 18:20:19,779] [VirtualMachine
[2011-12-18 18:20:24,429] [VirtualMachine.
[2011-12-18 18:20:54,871] [VirtualMachine.
[2011-12-18 18:20:54,878] (Task #1) [Core
[2011-12-18 18:20:55,124] (Task #1) [Core
[2011-12-18 18:20:56,307] [VirtualMachine.

.Analysis.Run]
Restore]
.Start]
Execute] INFO:
Execute]

.Analysis.SaveResults]
.Analysis.Processing]
INFO: Virtual machine

Stop]

INFO: Acquired analysis task for target]
INFO: Acquired virtual mach
INFO: Virtual machine
INFO: Virtual machine

"Cuckool"

INFO: Cuckoo analyzer exited wit

INFO: Analysis resy
INFO: Analysis resul
pow|

"Cuckool™"

"Cuckool" st
Cuckoo analyzer running wij

"/tmp/malwar
ine "cuckool"
successfully
arting in "gu
th PID 1732 c
h code 0 on v
1lts successfu
ts processor

ered off succ

22

Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

10 [2011-12-18 18:20:56,308] (Task #1) [Core.Analysis.FreeVM] INFO: Virtual machine "¢
1 [2011-12-18 18:20:56,309] (Task #1) [Core.Analysis.Run] INFO: Analyis completed.

uckool"

Let’s get through what happened.

At line 1 Cuckoo’s tasks dispatcher acquired a new submission for the target /tmp/malware.exe. At line 2 it acquired
the free virtual machine cuckool. At line 3 Cuckoo restored the virtual machine to current snapshot and at line 4 it
started it in graphical mode.

In the meanwhile it prepared all required files and configurations for the analysis.

At line 5 Cuckoo analyzer component started inside the virtualized Windows environment with process ID 1732. At
line 6, after the 60 seconds of the specified timeout, the analyzer terminates its execution and exits. At line 7 the
analysis results are stored to analysis/I/ and this same path is specified to the processor script which is invoked at line
8 with process ID 8571. At line 9 the virtual machine is successfully powered off and released at line 10. At line 11
finally Cuckoo considers the analysis as completed.

At this point you should have complete analysis results into analysis/I/ and, depending on the options you enabled in
reporting.conf (Configuration), some automatically generated reports at analysis/1/reports/.

2.3.5 Analysis Results

Once an analysis is completed, several files are stored in a dedicated directory. Unless you configured differently, all
of the analysis are saved into analysis/ with a subdirectory named after the numerical ID assigned to the analysis into
the database.

Following is an example of analysis results:

|-— analysis.conf
|-— analysis.log

| —— dump.pcap

|-— files

| | —— dropped.tmp
| ' —— dropped.exe
|-— logs

| |-— 1232.csv

| |-— 1540.csv

| —— 1118.csv

| -— reports

| | -— report.html
| | -— report.json
| '—— report.txt
|-— malware.exe

|-— shots

| |-— shot_1.jpg
| | -— shot_2.Jjpg
| |-— shot_3.jpg
| ‘—— shot_4. jpg
‘—— trace

analysis.conf

analysis.conf is a configuration file automatically generated by Cuckoo to specify some parameters to the guest com-
ponent (analyzer). It’s generally not relevant for an end-users as it’s exclusively used internally by Cuckoo.

2.3. Usage 23

relec

Cuckoo Sandbox Book, Release 0.3

analysis.log

analysis.log is a log file generated by Cuckoo analyzer and that keeps track of analysis execution and might report
errors occurred during the analysis.

dump.pcap

dump.pcap is the trace dump containing all the network activity generated by the virtual machine during the malware
execution.

files/

The files/ directory contains all files created or deleted by the malware and that were successfully dumped by Cuckoo.

logs/

The logs/ directory contains the raw CSV-like logs generated by the monitored processes and that contains the concrete
behavioral tracing results.

reports/

The reports/ directory contains the abstract analysis reports generated automatically by Cuckoo. The number and the
format of such reports depends on the the configuration explained in the Configuration chapter.

shots/

The shots/ directory contains the screenshots of Windows desktop taken during the analysis execution.

trace/

The trace/ directory is only used in specific cases (for instance when using the fracer analysis package) and contains
the assembly instruction traces of the monitored processes.

2.3.6 Web Interface

Cuckoo Sandbox comes with a very simple and handy web server which is used to navigate and view analysis reports.

Start the Web Server

The web server has following options:

Usage: web.py [options]

Options:
-h, —--help show this help message and exit
-t HOST, —--host=HOST Specify the host to bind the server on (default localhost)
-p PORT, —--port=PORT Specify the port to bind the server on (default 8080)

In order to start it, just launch:

24 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

‘$ python web.py

You should see displayed:

‘Starting web server on localhost:8080

You can change the host and the port on which to bind the web server by specifying them with the appropriate options.

Recent Analysis

If you now open your browser and go to http://localhost:8080/ you will see Cuckoo’s index page, which includes a
list of the 30 most recent analysis and a web form through which you can search for analysis by MDS5 hash.

File Edit Wiew History Bookmarks Tools Help

[Cuckeo Sandbox +
= localhost=8080 v (8 % ﬁ

CUCKQOO

Search for MDS: | Search
Added on MD5 Target Analysis Package

2001-12-18 17:20:15 Sb2de B 0628 5558d 201 260 9SSBT 1 e dimpdmalware e Mane

20102001 Cuckes Sandbes

By filling the form and submitting it you’ll be prompted with search results. By clicking on the MDS5 of one of the
analysis, you’ll be prompted with the report for that specific analysis.

Search for MD5

After submitting a valid MDS5 in the search form, you’ll be prompted with all the analysis performed on the file
matching that hash.

2.3. Usage 25

Cuckoo Sandbox Book, Release 0.3

File Edit

[Cuckoo Sandbox

= I~ localhost=2080/search/9b2desb062a5538d2a126bad3835d 169 @ (M. Y .ﬁ.

CUCKQO

Search for MDS: || I| search
Search results for: 9b2deAhdf2a5538d2al 26baR3835d1ed
Added On MD3 Target Analysls Package
2011-12-18 17:20:15 Sh2de B2 S55Rd 2] 20 9 ASEIS 1 =9 fimp/malware.exe Kane

£2010-2001 Cuckos Sandbox.

View Report

When requesting the report of a specific analysis, the web server will returns you the appropriate HTML report. Please
notice that if in your Cuckoo Setup you disabled the generation of HTML reports (see Configuration), a 404 error will
be returned.

2.4 Customization

This chapter explains how to customize Cuckoo. Cuckoo is written in a modular architecture built to be as much
customizable it can, to fit all user’s needs.

2.4.1 Analysis Packages
As explained in Analysis Packages, analysis packages are structured Python scripts that allow you to customize the
analysis procedure inside the virtualized Windows environment.

By default Cuckoo provides some default packages you can already use, but you are able to create and use some of
your own.

Creating new packages is really easy and just requires minimal knowledge of the Python language.

26 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

- | 72 lecathost:a0a0/analysis, 1 @ (4= coogle Q ﬁ

Ganeral Information Dropped Files Metwork Analysis Bahawior Analysis

This Is a report generated by Cuckos Sandoox, an open Source automated malware analysls systern.

Ganeral Information

Cuckoo Verslon: WD, 3-dev

Analysls Started; 2011-12-18 18:35: 1%

Duration: 39 seconds

File nama: na lvara . exe

File size: 104560 byles

Flle type: PE3Z executable for MS Windows (GUI) Intel 80386 32-bit

CRC32: 7EES2ETE

MD5: gbzdeBboa2as536d2a1 2603936550 109

SHAL: fR25Thdaaec FE7h180E230E b Feb 16V Phica

SHA2SE: G76a8] E3650 5720 2362450 8L 82dbBThalbol 2l c S Bee TAA30GF G 73T 2627 Fd 7l

SHAS12: 07142931 41bddh Sh2c 20 7R 11755433 cafiTh A TeaTe S 7o 74001 5140575 20 1 423490 (afiab 41 5735 59820b e 400 822016011 74780 1al ne 372057 Haad (ch

Ssdeep: ANTZ: 19GgneRehDMYORSE T 10 Lot ja ITe Inf EalHoB+PZ 7y adaMi dry 0z« bn1G: 19002 0hDHODSGRET 100wo DA 14 +aa 2771
Analysis Log 3

|
T

Dropped Flles
Filie: kadel .exe [

File: tnpa0c54cSa. hat (3

File: malware.axe &

I
Matwark Analysis

@ DNS Requests @

Getting started

As first example we’ll take a look at the default package for analyzing generic Windows executables (located at
shares/setup/packages/exe.py):

1 import os
2> import sys

4 sys.path.append ("\\\\VBOXSVR\\setup\\1ib\\")

¢ from cuckoo.execute import cuckoo_execute
7 from cuckoo.monitor import cuckoo_monitor

9 # The package main function "cuckoo_run" should follow a fixed structure in
0 # order for Cuckoo to correctly handle it and its results.
u def cuckoo_run(target_path):

12 # Every analysis package can retrieve a list of multiple process IDs it

13 # might have generated. All processes added to this list will be added to
14 # the monitored list, and Cuckoo will wait for all of the to complete their
15 # execution before ending the analysis.

16 pids = []

17

18 # The following functions are used to launch a process with the simplified
19 # "cuckoo_execute" function. This function takes as arguments (in specific
20 # order) :

21 # — a path to the executable to launch

2 # — arguments to be passed on execution

23 # — a boolean value to specify if the process have to be created in

2.4. Customization 27

Cuckoo Sandbox Book, Release 0.3

24 # suspended mode or not (it's recommended to set it to True if the

25 # process is supposed to be injected and monitored).

26 suspended = True

27 (pid, h_thread) = cuckoo_execute (target_path, None, suspended)

28

29 # The function "cuckoo_monitor" invoke the DLL injection and resume the

30 # process if it was suspended. It needs the process id and the main thread
31 # handle returned by "cuckoo_execute" and the same boolean value to tell it
2 # 1f it needs to resume the process.

33 cuckoo_monitor (pid, h_thread, suspended)

34

35 # Append all the process IDs you want to the list, and return the list.

36 pids.append (pid)

37 return pids

38

39 def cuckoo_check():

40 return True

41

2 def cuckoo_finish():

43 return True

Let’s walk through the given code.

At line 1 and 2 we import the os and sy s Python modules. At line 4 we append “\WVBOXSVR\setup\lib\” to Python’s

modules paths list: this will allow us to invoke Cuckoo’s modules directly from the shared folder.
Then we can see that three functions are defined:

e cuckoo_run()

e cuckoo_check()

* cuckoo_finish()

In the given example the package just executes the binary located at target_path in suspended mode and instructs

Cuckoo to inject the process and start monitoring it.

A slightly more complex example is the PDF analysis package (located at shares/setup/packages/pdf.py):

1 import os
2 import sys

4 sys.path.append ("\\\\VBOXSVR\\setup\\1ib\\")

¢ from cuckoo.execute import cuckoo_execute
7 from cuckoo.monitor import cuckoo_monitor

9 def cuckoo_run(target_path):

10 pids = []

11

12 # Customize this Path with the correct one on your Windows setup.

13 adobe_reader = "C:\\Program Files\\Adobe\\Reader 9.0\\Reader\\AcroRd32.
14

15 suspended = True

16 (pid, h_thread) = cuckoo_execute (adobe_reader, "\"%s\"" % target_path,
17 cuckoo_monitor (pid, h_thread, suspended)

18

19 pids.append (pid)

20 return pids

2 def cuckoo_check () :

exe"

suspende

28 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

23 return True

24

s def cuckoo_finish{():
26 return True

In this example we have the same structure, with the only difference being that instead of executing the file at rar-
get_path, it executes Adobe Reader with farget_path as argument. In this way it basically instructs Cuckoo to monitor
what Adobe Reader is doing while opening the given PDF file. As you understand, this opens a large spectrum of
possibilities on what Cuckoo can be used for.

cuckoo_run()

This function is the starting point of the analysis. In this block you should define every operation that should performed
as initialization of the analysis.

This could include the execution of processes, creation of files, injection of processes and whatever you might need to
perform.

It should return a list of PIDs that will be used by Cuckoo to monitor their process status: when all monitored processes
complete their execution, Cuckoo will terminate the analysis and exit earlier. If none are returned, Cuckoo will assume
that there is no process monitored and will just run for the amount of seconds specified by the analysis timeout.

cuckoo_check ()

This function is performed regularly every second during the analysis. It can be used to perform custom checks or any
other operation needed.

If the cuckoo_check () function returns False, Cuckoo will assume that the package matched a conditional check
and it will terminate the analysis earlier.

cuckoo_finish()

This function is executed when the analysis is completed. It can be used for any post-analysis purpose such as copying
files or any other operation you might need to perform before the virtual machine is shut down.

Cuckoo Modules
As you noticed in the packages examples, Cuckoo provides some custom functions that facilitates some complex
Windows actions.

These functions are defined in some Python modules that Cuckoo provide by default. You can use any of these modules
in your analysis packages.

Following is a list of available modules and the contained functions.

cuckoo.checkprocess

¢ Function check_process ():

Prototype:

def check_process (pid)

2.4. Customization 29

Cuckoo Sandbox Book, Release 0.3

Description: check if the specified process is still active and running.
Parameter pid: process ID of the process to check.
Return: True if the process is active, otherwise False.

Usage Example:

1 from cuckoo.checkprocess import check_process

3 1if check_process (pid) :

4 print "Process is active!"
s else:
6 print "Process is NOT active!"

cuckoo.execute

¢ Function cuckoo_execute ():

Prototype:

def cuckoo_execute (target_path, args = None, suspend = False)

Description: creates a process from the specified file.

Parameter target_path: path to the file to execute.

Parameter args: arguments to pass to the process.

Parameter suspend: set to True if should be created in suspended mode, otherwise set to False.
Return: returns a list with PID and thread handle.

Usage Example:

1 from cuckoo.execute import cuckoo_execute

3 (pid, h_thread) = cuckoo_execute ("C:\\binary.exe")

cuckoo.inject

¢ Function cuckoo_inject ():

Prototype:

def cuckoo_inject (pid, dll_path)

Description: injects the process with the specified PID with the DLL located at dil_path.
Parameter pid: ID of the process to inject.

Parameter d11_path: path to the DLL to be injected.

Return: returns True if injection succeeded, otherwise False.

Usage Example:

1 from cuckoo.inject import cuckoo_inject

3 if cuckoo_inject (pid, "C:\\library.dll"):
4 print "Process injected successfully!"

30 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

5 else:
6 print "Injection failed!"

cuckoo.monitor

¢ Function cuckoo_resumethread():

Prototype:

def cuckoo_resumethread(h_thread = -1)

Description: resumes a thread from suspended mode.
Parameter h_thread: handle to the thread to be resumed (as returned by cuckoo_execute ().
Return: returns True if resume succeeded, otherwise False.

Usage Example:

1 from cuckoo.monitor import cuckoo_resumethread

3 if cuckoo_resumethread (h_thread) :

4 print "Process resumed!"
s else:
6 print "Process resume failed!"

¢ Function cuckoo_monitor ():

Prototype:

def cuckoo_monitor(pid = -1, h_thread = -1, suspended = False, dll_path = None)

Description: instructs Cuckoo to inject and monitor the specified process.
Parameter pid: ID of the process to monitor.

Parameter h_thread: handle to the main thread of the process to monitor (as returned by
cuckoo_execute ()).

Parameter suspended: set to True if the process was created suspended and has to be resumed,
otherwise False.

Parameter d11_path (optional): path to the DLL to inject into the process. If none is specified it
will use the default one.

Return: returns True if monitor succeeded, otherwise False.

Usage Example:

1 from cuckoo.monitor import cuckoo_monitor

3 if cuckoo_monitor (pid, h_thread, True):

4 print "Process monitoring started successfully!"
s else:
6 print "Process monitoring failed!"

cuckoo.trace

¢ Function cuckoo_trace ():

2.4. Customization 31

Cuckoo Sandbox Book, Release 0.3

Prototype:

def cuckoo_trace(pid = -1)

Description: instructs Cuckoo to trace assembly instructions from the specified process.
Parameter pid: ID of the process to monitor.
Return: returns True if tracing was successful, otherwise False.

Usage Example:

1 from cuckoo.trace import cuckoo_trace

3 1if cuckoo_trace (pid) :

4 print "Process traced successfully!"
s else:
6 print "Process trace failed!"

2.4.2 Processing of results

As exaplained in the Configuration chapter, once an analysis is completed, Cuckoo invokes a script which can be used
to access and manipulate the results produced. It’s conceived to be customized by the user to make it do whatever he

prefers.

Such script (called “processor”) is invoked concurrently to Cuckoo, making it completely independent from the sand-
box execution, and takes the path to the analysis results as argument.

The default processor looks like following:

1 import sys

3 from cuckoo.processing.data import CuckooDict
4 from cuckoo.reporting.reporter import ReportProcessor

¢ def main(analysis_path):

7 # Generate reports out of abstracted analysis results.

8 ReportProcessor () .report (CuckooDict (analysis_path) .process())
9

0o if _ name_ == "_ main_ ":

1 if len(sys.argv) < 2:

12 print "Not enough args."

13 sys.exit (-1)

14

15 main(sys.argv[1l])

What it does is obtain a dictionary out of the raw results and invoke the generation of the enabled reports as explained
in Configuration.

In order to simplify some of the processing tasks you might need to perform, Cuckoo provide some ready-to-use
functions and classes which are generally located in “cuckoo/processing/”.

Retrieving details on a file

The first thing you might be interested in, is retrieving some details on the binary you just analyzed. For this purpose
there’s a dedicated class called File provided by the module cuckoo.processing. file. It takes the path to a
file as argument and invoking process () retrieves a dictionary containing some static details. You can actually use
this clan on any file you want, perhaps also on dropped files.

32 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

Following is an example usage and output:

>>> import pprint

>>> from cuckoo.processing.file import File

>>> details = File("analysis/l/malware.exe") .process|()
>>> pprint.pprint (details)

{'crc32': '"76652E7B"',
'md5': '9b2de8b062a5538d2al126ba93835d1e9"',
'name': 'malware.exe',
'shal': 'f3b2025f64aaec78701009223927b78b1677b9%2a",
'sha256': '676a818365c573e236245e8182db87balbc021c5d8ee7443b9f673f26e7£d7d1",
'shab512': '807142b3141bddbf5b2c2be78f£755433fca67b3f78ea7¢c5f7e74001614097a2b£439d9
'size': 194560,
'ssdeep': '3072:J9GggeRehDMVYQKSGJhJX11lo0wojolTmXIJmfEaQHNo8+PZ7yad4aMidry0zxLbnJG: J|

'type': 'PE32 executable for MS Windows (GUI) Intel 80386 32-bit'}

Processing behavioral analysis results

As you read in Analysis Results, Cuckoo generates some csv-like raw logs for every process it monitored. These
logs contains all the win32 API calls that Cuckoo was able to intercept while tracking the processes. In order to
make the information contained there more accessible, you can use the Analysis class provided by the module

cuckoo.processing.analysis.

This class takes the path to the logs files as argument and, by calling its function process (), it will return a

dictionary containing the behavioral results in a structured format.

Following is an example usage and output:

>>> import pprint
>>> from cuckoo.processing.analysis import Analysis
>>> results = Analysis("analysis/1/logs/") .process()
>>> pprint.pprint (results)
[{'calls': [{'api': 'LoadLibraryA',
'arguments': [{'name': 'lpFileName', 'wvalue': 'KERNEL32.DLL'}],
'repeated’': O,
'return': '0x7c800000"',
'status': 'SUCCESS',
'timestamp': '20111219100536.679'},

{'api': 'VirtualAllocEx"',
'arguments': [{'name': 'th32ProcessID', 'value': '764'},
{'name': 'szExeFile', 'value': 'binary.exe'},
{'name': 'lpAddress', 'wvalue': '0x00000000'},
{'name': 'dwSize', 'value': '4826'},
{'name': 'flAllocationType',
'value': '0x00003000'"},
{'name': 'flProtect', 'value': '0x00000040'}7],
'repeated’': O,
'return': '0x00150000"',
'status': 'SUCCESS',
'timestamp': '20111219100536.679"'},
{'api': 'CreateFileW',
'arguments': [{'name': 'lpFileName',
'value': '"C:\\WINDOWS\\system32\\svchost.exe'},
{'name': 'dwDesiredAccess',
'value': 'GENERIC_READ'}],

2.4. Customization

33

0fabab4l5e73¢

9JgeohDMODSGE

Cuckoo Sandbox Book, Release 0.3

'repeated’': 1,

'return': '0x000000b4"',
'status': 'SUCCESS',
'timestamp': '20111219100546.734"'},
{'api': 'CreateProcessA',
'arguments': [{'name': 'lpApplicationName',
'value': '(null)'},
{'name': 'lpCommandLine',
'value': 'svchost.exe'}],
'repeated': O,
'return': '1548"',
'status': 'SUCCESS',
'timestamp': '20111219100546.734"'},
{'api': 'VirtualAllocEx',
'arguments': [{'name': 'th32ProcessID', 'value': '1548'},
{'"name': 'szExeFile', 'value': 'svchost.exe'},
{'name': 'lpAddress', 'value': '0x00000000"'},
{"name': 'dwSize', 'value': '0'},
{'name': 'flAllocationType',
'value': '0x00003000'},
{"name': 'flProtect', 'value': '0x00000040'}7,
'repeated': O,
'return': '"',
'status': 'FAILURE',
'timestamp': '20111219100546.734"'},
{'api': 'ExitProcess',
'arguments': [{'name': 'uExitCode', 'value': '0x00000000'}],
'repeated’': 0,
'return': '',
'status': '',
'timestamp': '20111219100546.744"'}],
'first_seen': '20111219100536.679",
'process_id': '764"',
'process_name': 'binary.exe'}]

Using the normalized data generated by Analysis class, you can even generate a tree with the ProcessTree class
which orders the monitored processes recursively.

Following is an example usage and output:

>>> import pprint

>>> from cuckoo.processing.analysis import Analysis, ProcessTree
>>> results = Analysis("analysis/2/logs/") .process()

>>> tree = ProcessTree (results) .process|()

>>> pprint.pprint (tree)

[{'children': [{'children': [], 'name': 'kadef.exe', 'pid': 788},
{'children': [], 'name': 'cmd.exe', 'pid': 1764}],
'name': 'malware.exe',

'pid': 1488}]

Processing network traffic
In the exact same way as you can process behavioral results, you can also process network traffic from the PCAP file
using the Pcap class available from cuckoo.processing.pcap.

At current stage it retrieves a dictionary with all the information on DNS and HTTP requests as well as all UDP and
TCP packets.

34 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

Following is an example usage and output:

>>> import pprint

>>> from cuckoo.processing.pcap import Pcap

>>> network = Pcap("analysis/3/dump.pcap") .process|()
>>> pprint.pprint (network)

{'dns': [{'hostname': 'www.google.com',6 'ip': '74.125.127.104'}1],

"http': [{'body': '"',
'data': '"GET / HTTP/1.1\r\nHost: www.google.com\r\nUser—-Agent: Mozilla/5.
'host': 'www.google.com',
'method': 'GET',
'path': '/",
'port': 80,
'uri': 'http://www.google.com/',
'user—-agent': 'Mozilla/5.0 (Windows NT 5.1; rv:6.0.2) Gecko/20100101 Fir
'version': '1.1'}],

'tecp': [{'dport': 80,
'dst': '74.125.127.104"',
'sport': 1214,
'src': '10.0.2.15'}],

'udp': [{'dport': 67,

'dst': '255.255.255.255",
'sport': 68,
'src': '0.0.0.0"}1}

Putting all together

If you don’t want to bother invoking all the necessary classes but just want a comprehensive (and huge) dic-
tionary containing everything you need, you can simply use the CuckooDict class provided by the module
cuckoo.processing.data, just like the default package do.

Following is an example usage and output:

>>> import pprint
>>> from cuckoo.processing.data import CuckooDict
>>> analysis = CuckooDict ("analysis/2/") .process()
>>> pprint.pprint (analysis)
{'behavior': {'processes': [<results provided by class Analysis>],
'processtree': [<results provided by class ProcessTree>]},
'debug': {'log': '<content of analysis.log file>'},
'dropped': [<results provided by class File on all dropped files>],
'file': {<results provided by class File on the analyzed file>},
'info': {'duration': '38846 seconds',
'started': '2011-12-19 11:05:06",
'version': 'v0.3'},
'network': {<results provided by class Pcap>},
'static': {}}

The output has been stripped out of results.

2.4.3 Reporting Results
The processor script is responsible for taking analysis results and elaborate them, as explained in the Processing of
results chapter.

Since version 0.3, Cuckoo Sandbox provides also a reporting engine that can be used to generate consumable reports
(as done by the default processor script): it takes the analysis results as input and stores the produced reports in the

2.4. Customization 35

0 (Windows N

efox/6.0.2",

Cuckoo Sandbox Book, Release 0.3

dedicated folder as explained in the Analysis Results chapter.

The reporting engine, called ReportProcessor, is designed to load all reporting modules specified in configuration
file reporting.conf (see Configuration chapter) and execute them.

A reporting module is a simple Python script which aggregates, normalizes and correlates analysis data in order to
generate a report out of it. Cuckoo comes with several built-in reporting modules described below, but writing your
own modules is incredibly simple.

Built-in Reports

Report TXT

This module generates a human-readable report in plain text format.

Report HTML

This module generates a human-readable report in HTML format. These reports are also served by the built-in web
server as explained in Web Interface.

JSON Dump

This module dumps all Cuckoo’s analysis results in JSON format. This is useful when you need to export Cuckoo’s
data to other tools or services.

Writing your own reporting module
As said, reporting tasks are handled by the ReportProcessor class: it loads all reporting modules from
cuckoo/reporting/tasks folder, checks if they are enabled in the configuration file and then execute them.
If you want to write your own reporting module you have to:
* Create a Python file inside the reporting module folder (cuckoo/reporting/tasks), e.g. foo.py.

¢ Append an option inside the reporting configuration file (reporting.conf) with the lowercase name of the file and
enable it, like following:

foo = on

* Inside your Python script you have to implement the BaseObserver interface in a class named “Report”.
When new analysis results are available, Cuckoo calls your update () method passing the analysis results as
a parameter.

A sample custom reporting module would look like following:

from cuckoo.reporting.observers import BaseObserver

1
2
3 class Report (BaseObserver) :

4 def _ init_ (self):

5 # Put here your initialization or leave a pass.
6 pass

7

8

9

def update(self, results):
Here you get analysis results as parameter.

36 Chapter 2. Contents

Cuckoo Sandbox Book, Release 0.3

10 # Now do your stuff.
1 print "My report!"

Whatever operation you might want to run, remember to place it inside the update () method or invoke it from there,
so that Cuckoo will be able to execute it when needed.

2.5 Final Remarks

2.5.1 Join the discussion

You can get in contact with Cuckoo’s developers and users through the official mailing list kindly provided by The
Honeynet Project or through IRC on the official #cuckoobox channel.

2.5.2 Contribute

We often get contacted by people willing to contribute. Most of the times they consist of unexperiences users. Other
times they never end what they started or promised.

There are a lot of ways to contribute to an open source project, not only developing it but also donating or sponsoring
hardware for testing, reporting bug or suggesting new features to improve software, donating money to fund costs like
hosting, or simply publishing Cuckoo around the web. Any kind of help is really appreciated and help Cuckoo project.

Cuckoo is a simple but still somewhat complex software, therefore we are very careful on who and how can contribute
actively developing the software. This doesn’t mean that we don’t accept any, but before coming to us please make
sure that you are seriously committed into contributing and that you have the required knowledge and experience using
Cuckoo and understanding how it works.

The best way to get involved is to Join the discussion and start writing code by your own: patches, new modules, new
analysis packages. Reflect on what you believe Cuckoo lacks on and do it.

2.5.3 Donations

Cuckoo is software released freely to the public and developed during spare time by volunteers only. If you enjoy it
and want to see it kept on being developed and maintained, please consider making a donation.

We receive small donations through Flattr.

If you want to make a larger donation or provide a different form of support (such as hardware, connectivity, hosting,
anything) you can contact us at donations at cuckoobox dot org.

2.5.4 People

Cuckoo Sandbox is an open source project result of the efforts and contributions of a lot of people who enjoyed
volunteering some of their time for a greater good :).

Developers
Name Role Contact
Claudio “nex” Guarnieri | Lead Developer | nex at cuckoobox dot org
Dario Fernandes Developer dario at cuckoobox dot org
Alessandro “jekil” Tanasi | Developer alessandro at tanasi dot it

2.5. Final Remarks 37

https://public.honeynet.org/mailman/listinfo/cuckoo
http://www.honeynet.org
http://www.honeynet.org
http://flattr.com/thing/394890/Cuckoo-Sandbox

Cuckoo Sandbox Book, Release 0.3

Contributors

* Ryan Sommers (contributed with the concept of the DLL analysis package)

Acknowledgements

Felix Leder (for mentoring and believing in the project in the first place)

° Kjell Christian Nilsen (for providing valuable feedback and several feature suggestions)
* Mark Schloesser and Angelo dell’ Aera (for helping on Python matters :P)

° Georg Wicherski (for supporting the project and giving it a home at first place)

* Carsten Willems (for the precious suggestions provided)

* The Honeyﬂet Project (for supporting the project)

* The Shadowserver Foundation (¢or supporting the project)

° Everyone using Cuckoo (for giving a sense to all of this)

38

Chapter 2. Contents

http://www.honeynet.org
http://www.shadowserver.org

	Having troubles?
	FAQ

	Contents
	Introduction
	Installation
	Usage
	Customization
	Final Remarks

